Supplemental Material: Video Based Reconstruction of 3D People Models

Thiemo Alldieck¹ Marcus Magnor¹ Weipeng Xu² Christian Theobalt² Gerard Pons-Moll²

¹Computer Graphics Lab, TU Braunschweig, Germany
²Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
{alldieck,magnor}@cg.cs.tu-bs.de {wxu,theobalt,gpons}@mpi-inf.mpg.de

1. Implementation Details

In this section, we present more implementation details of the presented method.

1.1. Optimization Parameters

The presented results are calculated using two empirically determined parameter sets: one for clothed subjects, one for subjects in minimal clothing. We found that the results are not very sensitive to optimization parameter weights and we select them so that the energy terms are balanced. The consensus objective function is defined as:

\[E_{cons} = E_{data} + w_{lp}E_{lp} + w_{var}E_{var} + w_{sym}E_{sym} \] (1)

The method is initialized with \(w_{lp} = 4.0 \), \(w_{var} = 0.6 \) and \(w_{sym} = 3.6 \). For subjects in minimal clothing, we enforce a smoother surface with initializing \(w_{lp} = 6.5 \). We minimize \(E_{cons} \) with respect to model parameters and offsets. We update the point-to-line correspondences during optimization. An interesting direction to explore would be to extend [3] to continuously optimize line to surface correspondences, model parameters and offsets. In this work we recompute correspondences during optimization. After each correspondence step, we re-initialize the three regularization terms \(E_{lp} \), \(E_{var} \) and \(E_{sym} \). To capture personal details, we gradually decrease \(w_{lp} \) and \(w_{var} \). In order to prevent spikes and noise in regions that are not well covered by the data-term we slightly increase \(w_{var} \) in those areas.

1.2. Computation Time and Complexity

The results are calculated with Python code without highly parallel computation. No attempts for run-time optimization have been made. On an Intel Xeon E5-1630 v4 processor, the run-time for one frame of pose reconstruction is about 1 min including IO. Consensus shape estimation, meaning correspondence calculation and subsequent optimization on \(F = 120 \) frames, takes about 1:50 min.

Given, that the connectivity of the mesh is fixed and the maximum connectivity is bounded by constant \(k \), the complexity of the regularization falls into \(O(N) \). As every new frame introduces more matches, the complexity of the optimization falls into \(O(FNP) \), with \(P \) being the number of pixels (upper bound for silhouette).

2. Scale Ambiguity

Scale is an intrinsic ambiguity in monocular methods when the distance of the person to the camera is not known. Multiple views of the person in different poses help to mitigate the problem but we have observed that the ambiguity remains. The reason is that pose differences induce additional 3D ambiguities which cannot be uniquely decoupled from global size, even on multiple frames. Therefore, we perform an evaluation that is not sensitive to scale. Before calculating the per vertex point to surface error, we adjust the one-dimensional scale parameter to match the ground truth. This step is necessary to evaluate the quality of the shape reconstructions as otherwise, almost all error would come from the scale miss-alignment.

3. Comparison with the Depth Camera Based Approach [1]

We compare our method against state-of-the-art RGB-D based approach [1] on their dataset which we refer to as KinectCap in the main paper. To make a fair comparison we also adjust the scale of their result to match the ground truth. In the original paper, they performed an evaluation that was based on scan to reconstructed mesh distance. Since the scan contains noise they had to filter out noise by not considering scan points that are further away than a given threshold. We tried to make the fairest comparison possible so we report in the main paper their result using this method, which was 2.54cm. Since we did not know what threshold to use to filter out noise in the scan and since different scan point sampling/density can produce very different results we followed the strategy explained in the main paper which was also followed in [4]. We first perform non-
rigid registration regularized by the body model to obtain a
ground truth registration (since registrations are regularized,
they do not contain the noise in the scans). Then we com-
pute a bi-directional surface to surface distance from the
ground truth registration to the reconstructed shape. Fol-
lowing this strategy, their method achieves an accuracy of
3.2cm and ours 3.9cm. Our monocular approach is still
not as accurate as approaches that use a depth camera [1]
but produces comparable results despite using only a single
RGB camera.

4. More results

We show all 9 reconstruction results on image sequences
rendered from the DynamicFAUST dataset in Fig. 1, and all
9 results from the BUFF scans in Fig. 2. It is worth notice-
ing that the segmentation masks obtained from the scans in
the BUFF dataset contain noise and missing data, which de-
grades the reconstruction quality of our method, especially
for head, hands and feet. In addition, the pose reconstruc-
tion for the hip motion is less accurate than for people turn-
ing around. Note that the hip motion (in DynamicFAUST
and BUFF) is probably not the most suitable motion pattern
to reconstruct a static 3D person model but it allowed us
to evaluate our approach numerically. Thus, the results us-
ing the rendered images of BUFF and DFAUST are slightly
worse than results obtained with a real RGB camera. All
the 24 reconstructed models in the People-Snapshot dataset
are shown in Fig. 3.

References

full-body reconstructions of moving people from monocular
RGB-D sequences. In International Conference on Computer
Vision (ICCV), pages 2300–2308, 2015. 1, 2
FAUST: Registering human bodies in motion. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), July
2017. 3
Efficient and precise interactive hand tracking through joint,
continuous optimization of pose and correspondences. ACM
Transactions on Graphics (TOG), 35(4):143, 2016. 1
accurate, human shape estimation from clothed 3D scan se-
cquences. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 1, 4
Figure 1. Our results on image sequences from D-FAUST [2]. (a) ground truth 3D scan, (b) consensus shape with ground truth poses (consensus-p), (c) consensus-p heatmap, (d) consensus shape (consensus), (e) consensus heat-map (blue means 0mm, red means ≥ 2cm).
Figure 2. Our results on image sequences from BUFF [4]. (a) ground truth scan, (b) consensus shape with ground truth poses and texture, (c) consensus shape with texture.
Figure 3. Results on our People-Snapshot dataset. We blurred the faces for the subjects that did not give consent.