Logo CG Computer Graphics TU Braunschweig Logo TU





An Affordable Solution for Binocular Eye Tracking and Calibration in Head-mounted Displays

Authors: Michael Stengel, Steve Grogorick, Martin Eisemann, Elmar Eisemann, Marcus Magnor




Abstract

Immersion is the ultimate goal of head-mounted displays (HMD) for Virtual Reality (VR) in order to produce a convincing user experience. Two important aspects in this context are motion sickness, often due to imprecise calibration, and the integration of a reliable eye tracking. We propose an affordable hard- and software solution for drift-free eye-tracking and user-friendly lens calibration within an HMD. The use of dichroic mirrors leads to a lean design that provides the full field-of-view (FOV) while using commodity cameras for eye tracking. Our prototype supports personalizable lens positioning to accommodate for different interocular distances. On the software side, a model-based calibration procedure adjusts the eye tracking system and gaze estimation to varying lens positions. Challenges such as partial occlusions due to the lens holders and eye lids are handled by a novel robust monocular pupil-tracking approach. We present four applications of our work: Gaze map estimation, foveated rendering for depth of field, gaze-contingent level-of-detail, and gaze control of virtual avatars.


Project Motivation

Advances in Virtual Reality are currently pushed by the media and different hardware vendors. Virtual Reality will manifest as the most innovative and immersive medium of the very near future. This hype is primarily caused by advances in head-mounted displays, which currently get affordable and therefore more popular. What‘s currently missing in state-of-the-art head-mounted displays is an affordable solution for tracking the eyes. However, gaze is a key component for many tasks in reality and it should be the same with Virtual Reality. Many applications would benefit from gaze-tracking or are not even possible without knowledge about gaze, for example foveated rendering. We therefor provide an HMD design with integrated binocular gaze tracking. We avoid using expensive hardware parts, so it costs less than 400 dollars to create it. Eye-tracking is performed very fast with a latency of less than 20 milliseconds. We also propose efficient user calibration, which can be a very tedious task otherwise. And importantly we do not reduce the available field of view since we are tracking the eyes virtually from the front view which also results in a quite uniform tracking accuracy. On this page we inform about current HMD technology in the context of gaze-continguency for perceptually convincing VR experiences. I will also explain how to recreate our eye-tracking HMD for those who are willing to experience gaze-contingent VR or who also want to develop novel VR applications. Later I will explain how the calibration and the gaze tracking works. In the end I will post infos about some novel VR applications.

  1. HMD Technology - Today.
  2. Gaze-Tracking Concept
  3. Assembly
  4. Hardware Calibration
  5. Gaze-Tracking Calibration
  6. Tracking Performance
  7. Applications / Future Work
  8. Publication

Publication Info

Proc. ACM Multimedia, vol. 23, October 2015
Won the 'Best Student Paper Award'.
Part of project "Reality CG" and "Visual Fidelity Optimization of Displays".
[pdf] [bib]

Download 3D Printable Model

[STL Model]

Explanation Video



Line
TU Braunschweig - Fakultät für Mathematik und Informatik - Computer Graphics - An Affordable Solution for Binocular Eye Tracking and Calibration in Head-mounted Displays