Selecting Coherent and Relevant Plots in Large Scatterplot Matrices
The scatterplot matrix (SPLOM) is a well-established technique to visually explore high-dimensional data sets. It is characterized by the number of scatterplots (plots) of which it consists of. Unfortunately, this number quadratically grows with the number of the data set’s dimensions. Thus, an SPLOM scales very poorly. Consequently, the usefulness of SPLOMs is restricted to a small number of dimensions. For this, several approaches already exist to explore such ‘small’ SPLOMs. Those approaches address the scalability problem just indirectly and without solving it. Therefore, we introduce a new greedy approach to manage ‘large’ SPLOMs with more than 100 dimensions. We establish a combined visualization and interaction scheme that produces intuitively interpretable SPLOMs by combining known quality measures, a pre-process reordering and a perception-based abstraction. With this scheme, the user can interactively find large amounts of relevant plots in large SPLOMs.
Author(s): | Dirk. J. Lehmann, Georgia Albuquerque, Martin Eisemann, Marcus Magnor, Holger Theisel |
---|---|
Published: | April 2012 |
Type: | Article |
Journal: | Computer Graphics Forum Vol. 31 |
Project(s): | Scalable Visual Analytics |
@article{Lehmann2012SCR, title = {Selecting Coherent and Relevant Plots in Large Scatterplot Matrices}, author = {Lehmann, Dirk. J. and Albuquerque, Georgia and Eisemann, Martin and Magnor, Marcus and Theisel, Holger}, journal = {Computer Graphics Forum}, volume = {31}, number = {6}, pages = {1895--1908}, month = {Apr}, year = {2012} }
Authors
Dirk. J. Lehmann
ExternalGeorgia Albuquerque
Fmr. Senior ResearcherMartin Eisemann
DirectorMarcus Magnor
Director, ChairHolger Theisel
External